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Pulse entrainment between two excitatory media is studied in the Aliev-Panfilov model. We show that a
spiral chaos in the continuous excitatory medium can be eliminated by a grid network using the pulse entrain-
ment. This mechanism may be applied to the cardiac system, where the ventricular fibrillation is interpreted as
the spiral chaos and the Purkinje fibers act as the grid network.
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Some types of cardiac arrhythmia are considered to be
related to spiral waves in excitable mediaf1–3g. The ven-
tricular fibrillation is a serious cardiac arrhythmia, which
leads to sudden death by heart attacks. Irregular and fast
oscillations are seen in the electrocardiogram when the ven-
tricular fibrillation occurs. In normal states, the excitation
pulses propagate, starting from the sinoatrial node, via the
atrial-ventricular node, through the Purkinje fibers to the
ventricular cells. In the ventricular fibrillation, excitation
waves are generated from regions other than the sinoatrial
node and propagate irregularly. The detailed mechanism of
the ventricular fibrillation is not known well, but the irregu-
lar time evolution of activity might be due to the spiral chaos
in the excitable system.

There are some model equations for the cardiac cells
based on the dynamics of ion channelsf4,5g. Some methods
to control the spiral chaos were proposed, using the model
equationsf6,7g. Those model equations are rather compli-
cated. We use the Aliev-Panfilov modelf8g to study the spiral
chaos and its control. This model is a phenomenological
model with two variables like the FitzHugh-Nagumo model
for a neuron. The model equation is expressed as

]e

]t
= − Kese− adse− 1d − er + D¹2e,

]r

]t
= fe + m1r/sm2 + edgf− r − kese− b − 1dg, s1d

wheree denotes a variable representing the membrane po-
tential, andr is a variable related to ion channels. The exci-
tation wave of the ventricular cells has a rather long plateau

and the width of the plateau strongly depends on the pulse
interval. The Aliev-Panfilov model is constructed to repro-
duce the above characteristics qualitatively. The parameters
other thana andD are fixed to beK=8, e=0.01,m1=0.11,
m2=0.3, andb=0.1. In the one-dimensional system, there are
pulse-train solutionssperiodic wavesd. The pulse-train solu-
tions become unstable if the parametera is below a critical
value ac. The pulse width of the excitable pulse begins to
oscillate below the critical value. This is the breathing insta-
bility of the pulse trains, and it is also called the alternans
instability f9g. When the breathing instability is sufficiently
strong, the pulse train collapses. If this type of collapse of
pulse trains occurs in a spiral pattern, the spiral collapses and
another spiral is spontaneously created, and it leads to a spi-
ral chaosf10g. The spiral chaos appears foraø0.115. We
have proposed a method of elimination of the spiral chaos by
periodic forcingf11g. sAlonsoet al.studied the supression of
turbulence of scroll waves by periodic forcing in the Barkley
model f12g.d

The real heart is not a homogeneous system such as the
Aliev-Panfilov equation. There are various structures and in-
homogeneities. We consider mainly the effect of the Purkinje
fibers in this paper. The Purkinje fibers make a network
structure. The excitation pulse propagates several times
faster in the Purkinje fibers than in the normal ventricular
tissue. For simplicity, we assume that the dynamics of the
Purkinje fibers is represented by the same model equations1d
with largerD sD is assumed to be 1 in the ventricular tissued,
since the pulse velocity is proportional toÎD. We consider a
two-layer model of the Aliev-Panfilov equation. The first
layer represents the ventricular tissue and the second layer

FIG. 1. sad Entrainment of two pulses atd=0.03. The solid lines denotee1sx,td and the dashed lines denotee2sx,td. sbd Desynchroni-
zation of two pulses atd=0.02 in the coupled one-dimensional Aliev-Panfilov model.scd Pulse velocities in the first fibersrhombid and in
the second fiberscrossesd as a function ofd.
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the Purkinje fibers, assuming that the Purkinje fiber network
covers on the ventricular tissue. First, we study the pulse
entrainment between the two fibers with a one-dimensional
model. The model equation is written as

]e1

]t
= − Ke1se1 − adse1 − 1d − e1r1 +

]2e1

]x2 + d12se2 − e1d,

]r1

]t
= fe + m1r1/sm2 + e1dgf− r1 − ke1se1 − b − 1dg,

]e2

]t
= − Ke2se2 − adse2 − 1d − e2r2 + D

]2e2

]x2 + d21se1 − e2d,

]r2

]t
= fe + m1r2/sm2 + e2dgf− r2 − ke2se2 − b − 1dg, s2d

wheree1 ande2 represent, respectively, the membrane poten-
tials in the first and second fibers, andd12 is a coupling
constant from the second fiber to the first fiber, andd21 is a
coupling constant from the first fiber to the second fiber. We
do not always assume the symmetryd12=d21, considering
situations such that the membrane potentials change differ-
ently in the two fibers owing to the difference of the thick-
ness. The pulse propagates faster byÎD in the second fiber
than in the first fiber, ifd12=d21=0. The interaction between
the two fibers induces the entrainment of pulse propagation.

Figure 1sad displays the time evolutions ofe1sx,td fsolid
lineg and e2sx,td fdashed lineg for d12=d21=d=0.03 and
D=25. The system size isL=1000 and the periodic boundary
conditions are assumed. We have used the finite difference
method withDt=0.0005 andDx=0.5. The two pulses propa-
gate with the same velocity, therefore, we can say that the
two pulses are mutually entrained. Figure 1sbd displays the
time evolutions ofe1sx,td ssolid lined and e2sx,td sdashed
lined for d12=d21=d=0.02 andD=25. The mutual coupling
is weak and the slower pulse described bye1sx,td cannot
follow the second pulse. Indeed, the velocity of the first
pulse becomes nearly one-fifth of that of the second pulse.
Figure 1scd displays the pulse velocities of the two pulses.
The pulse entrainment breaks down belowd=0.02 if the
coupling constantsd12 andd21 take the same valued. Below
d=0.02, the pulse velocities take two different values in the
first and second fibers, which are almost the same as two
pulse velocities in the case of no coupling. Aboved=0.02,
the pulse entrainment occurs, the pulse velocities take the

same value in the first and second fibers, which is almost the
same as the pulse velocity in the secondsfasterd fiber. sIn
contrast, Monineet al. found that a slower front dominates
the front propagation in a problem of coupled layers in sur-
face catalysisf13g.d

Similar behaviors are obtained for more general cases of
asymmetric coupling. Figure 2sad displays the velocities of
the pulse in the first as a function ofd12 for d21=0 srhombid
andd21=0.1 scrossesd. The case ofd21=0 represents the one-
way coupling, since the second fiber is not affected by the
first fiber. The pulse velocity in the first fiber jumps at
a critical valued12c, and the pulse entrainment occurs for
d12ùd12c. The critical valued12c is nearly 0.020 ford21=0
and d12c,0.0205 for d21=0.1. The critical valued12c is
nearly 0.20, and hardly depends ond21. The velocity of the
pulse in the first fiber jumps down discontinuously below the
critical coupling. Ford21=0.1, the interaction from the first
fiber to the second fiber is stronger, then, the delayed pulse in
the first fiber excites another pulse in the second fiber. As a
result, the slower pulse in the first fiber becomes a generator
of pulses in the second fiber. Figure 2sbd displays such a time
evolution of the pulse generation atd21=0.1 andd12=0.018.
Pulses are generated periodically in the second fiber, and the
period is 41.4 ford21=0.1 andd12=0.018.

Next, we study two-dimensional systems. The Purkinje
fibers make a complicated network structure, but here we
have assumed a grid structure of mesh-size 20 for the net-
work in the second layer for the sake of simplicity. We con-
sider a coupled system in which the grid network is sur-
mounted on a normal plane. Our model equation is almost
the same as Eq.s2d, but ]2/]x2 is replaced by the Laplacian
¹2. The variablese1 and r1 in the first layer are defined

FIG. 2. sad Pulse velocities in the first fiber as a function ofd12

for d21=0 srhombid and 0.1scrossesd. sbd Time evolutions ofe1

ssolid lined ande2 sdashed lined for d21=0.1 andd12=0.018.

FIG. 3. sad, sbd Initial patterns ofe1 sad and e2 sbd for the numerical simulation.scd, sdd Snapshot patterns ofe1 scd and e2 sdd for
a=0.1, D=4, d12=0, andd21=0. In the marked region,e1 se2d satisfiese1.0.4 se2.0.4d. A spiral chaos apppears in the first layer, but a
spiral pattern is stable in the second layer.
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on a normal two-dimensional plane, ande2 and r2 in the
second layer are defined only on the grid lines satisfying
x=20i +10 or y=20j +10 where i and j are integers. The
Laplacian¹2e2 is calculated in the second layer as]2e2/]x2

or ]2e2/]y2 on the grid lines other than the intersections
s20i +10,20j +10d and it is calculated as]2e2/]x2+]2e2/]y2

at the intersections. We have used the finite difference
method with D=0.0005 and Dx=0.5 also in the two-
dimensional simulations.

We consider the cases of relatively stronger interaction,
where the excitation waves tend to be synchronized between
the two layers. However, several types of excitation waves,
such as regular one-dimension pulses, spiral waves, and spi-
ral chaos, propagate in two dimensions. We investigate
which types of excitation waves appear in the coupled sys-
tems. A spiral pattern is unstable fora,0.115 in the first
layer, if there is no interaction, i.e.,d12=0 andd21=0. How-
ever, a stable spiral appears on a grid structure in the second
layer. We first show a numerical simulation fora=0.1 and
D=4 in the case of no coupling. Figures 3sad and 3sbd show
initial patterns fore1 ande2. The initial values are the same
on the grid lines, i.e.,e1sx,yd=e2sx,yd. Figure 3scd displays a
spiral chaos in the first layer. The initial regular spiral breaks
up and many small spirals are created. Figure 3sdd displays a
stable spiral in the second layer. The spiral is rather angular
because it appears on the grid structure. It is not a numerical
artifact. We have got the same angular spiral even in a simu-
lation with higher resolution with smaller space stepDx. We
have checked that this type of spiral is stable even for
a=0.06 in the grid network. The average period of temporal
oscillation is 29.4 in the first layer, and the period of oscil-
lation is 34.5 in the second layer. The spiral in Fig. 3sdd
rotates slower than the spiral chaos in Fig. 3scd. If the mutual
interaction is not zero, mutually synchronized spiral waves
can appear. Figures 4sad and 4sbd display snapshot patterns
of sad e2 and sbd e1 at the same time fora=0.1, D=4,
d21=0.1, andd12=1. A spiral rotates stably in the first layer,
which is entrained to the spiral in the second layer. The ini-
tial condition is a regular spiral shown in Figs. 3sad and 3sbd.
The stable spiral in the second layer overcomes the spiral
chaos in the first layer owing to the asymmetric coupling
d21,d12. If d21 is step by step increased at a fixed value of
d12=1, the spiral becomes unstable atd21,0.27 and many
spirals are created. Figure 4scd displays a snapshot pattern of
e1 in the first layer fora=0.1,D=4, d21=0.3, andd12=1. At

the parameter, spirals are created also in the second layer, but
the motion is almost synchronized between the two layers.
That is, the spiral chaos in the first layer dominates the whole
system for relatively largerd21.

Even if the initial condition is a spiral chaos in the first
layer and a regular spiral in the second layer, the regular
spiral in the second layer can entrain the whole system for
sufficiently smalld21. For this type of simulation, we have
assumed that the initial condition fore2 is a regular spiral
shown in Fig. 3sdd and the initial condition fore1 is a spiral
chaos shown in Fig. 3scd. Figure 5sad displays a snapshot
pattern ofe1 for a=0.1, D=4, d12=1, and d21=0.06. The
initial spiral chaos is eliminated and a regular spiral appears
in the first layer. Figure 5sbd displays a snapshot pattern ofe1
for a=0.1,D=4, d12=1, andd21=0.08. The spiral chaos can-
not be eliminated, and the spiral chaos in the first layer domi-
nates the whole system. The transition for the elimination of
the spiral chaos occurs atd21,0.07 for a=0.1, D=4, and
d12=1. This critical value ofd21 is different from the critical
value of the instability of a regular spiral as shown in Fig. 4.
Even a smaller value ofd21 is necessary for the elimination
of the initial spiral chaos. Thus we have shown that the spiral
chaos is eliminated in the first layerscorresponding to the
ventricular cellsd by the regular spiral in the second layer
scorresponding to the Purkinje fibersd, if the coupling is suf-
ficiently asymmetric. We have shown the results only for
D=4 anda=0.1, but similar results are observed for other
parameters.

The elimination of the spiral chaos in the first layer can be

FIG. 4. sad, sbd Snapshot patterns ofe2 sad and e1 sbd for a=0.1, D=4, d12=1, andd21=0.1. In the marked region,e2 se1d satisfies
e2.0.4 se1.0.4d. A stable spiral appears in the second layer, and a regular spiral appears also in the first layer as a result of the mutual
synchronization.scd Snapshot pattern ofe1 for a=0.1, D=4, d12=1, andd21=0.3. A spiral is unstable and many spirals are created.

FIG. 5. sad Snapshot pattern ofe1 for a=0.1, D=4, d12=1, and
d21=0.06. As an initial condition, a regular spiral is set in the sec-
ond layer and a spiral chaos is set in the first layer. The spiral chaos
is eliminated.sbd Snapshot pattern ofe1 for a=0.1, D=4, d12=1,
andd21=0.08. A spiral chaos dominates the whole system.
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performed even by regular pulses in the second layer. In
normal states of heart beating, regular pulses are emitted
from a pacemaker region and propagate through the Purkinje
fibers. The regular pulses are transmitted to the ventricular
cells. To simulate a similar situation, we have performed a
numerical simulation. To generate regular pulses in the sec-
ond layer, a periodic force of the formf =0.2 sins2pt /60d is
applied in the regionx,10, ande2sx,yd=0 is assumed ini-
tially in the second layer. In this simulation, the region
x,10 in the second layer works as a pacemaker region. The
period 60 is rather smaller than the period of spiral waves. If
the initial condition ofe1 is 0 in the first layer, regular pulses
propagate naturally both in the first and second layers. To test
a possibility of the elimination of the spiral chaos in the first
layer by the regular pulses in the second layer, the initial
condition ofe1 is set to be a spiral chaos shown in Fig. 3scd,
and the initial condition ofe2 is set to be a regular pulse state
constructed by a simulation without the mutual coupling.
Figures 6sad and 6sbd display snapshot patterns ofsad e2 and
sbd e1 for a=0.1,D=4, d21=0.15, andd12=4. A regular pulse
propagates in the +x direction in both layers. The spiral
chaos in the first layer is eliminated and the periodic forcing
in the pacemaker region dominates the whole system. If this
type of phenomenon occurs in real hearts, the ventricular
fibrillation can be eliminated by the regular pulses through

the Purkinje fibers starting from the pacemaker region in the
sinoatrial node. Figures 6scd and 6sdd display snapshot pat-
terns ofe2 ande1 for a=0.1,D=4, d21=0.19, andd12=4. The
spiral chaos cannot be eliminated at the parameter and al-
most synchronized spiral chaos appears in both layers. The
transition for the elimination of the spiral chaos occurs at
d21,0.17 fora=0.1,D=4, andd12=4. The critical value of
d21 increases withÎD for a=0.1 andd12=4. For example, the
critical values ofd21 are evaluated asd21c=0.09 for ÎD=1,
d21c=0.17 for ÎD=2, d21c=0.34 for ÎD=4, d21c=0.46 for
ÎD=6, andd21c=0.6 for ÎD=8. That is to say, the elimina-
tion of spiral chaos occurs more easily asÎD is increased.
The pulse velocity increases in proportion toÎD if the inter-
action between the two layers is absent. If the sinusoidal
force f =0.2 sins2pt /60d is uniformly given to the grid net-
work in the second layer, the elimination of the spiral chaos
occurs belowd21=2.0, whend12 is fixed to be 4. This simu-
lation corresponds to the case ofD→`. Thus we have found
that the regular pulses in the second layerscorresponding to
the Purkinje fibersd cause the pulse entrainment between the
two layers, and the spiral chaos can be eliminated, if the
coupling is sufficiently asymmetric. The strong effect of the
Purkinje fibers on the ventricular cells may be related to the
suppression of the ventricular fibrillation.
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FIG. 6. sad, sbd Snapshot patterns ofe2 sad ande1 sbd for a=0.1,D=4, d21=0.15, andd12=4 with a pacemaker region in the left side of
the second layer. The spiral chaos is eliminated and a regular pulse is propagating in the +x direction in both layers.scd, sdd Snapshot patterns
of e2 scd ande1 sdd for a=0.1, D=4, d21=0.19, andd12=4. Spiral chaos dominates in both layers.
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