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Elimination of spiral chaos by pulse entrainment in the Aliev-Panfilov model
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Pulse entrainment between two excitatory media is studied in the Aliev-Panfilov model. We show that a
spiral chaos in the continuous excitatory medium can be eliminated by a grid network using the pulse entrain-
ment. This mechanism may be applied to the cardiac system, where the ventricular fibrillation is interpreted as
the spiral chaos and the Purkinje fibers act as the grid network.
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Some types of cardiac arrhythmia are considered to band the width of the plateau strongly depends on the pulse
related to spiral waves in excitable media-3]. The ven- interval. The Aliev-Panfilov model is constructed to repro-
tricular fibrillation is a serious cardiac arrhythmia, which duce the above characteristics qualitatively. The parameters
leads to sudden death by heart attacks. Irregular and fagther thana andD are fixed to beK=8, €=0.01, u;=0.11,
oscillations are seen in the electrocardiogram when the vert2=0.3, andb=0.1. In the one-dimensional system, there are
tricular fibrillation occurs. In normal states, the excitation Pulse-train solutiongperiodic waves The pulse-train solu-
pulses propagate, starting from the sinoatrial node, via thEons become unstable if the paramedeis below a critical

atrial-ventricular node, through the Purkinje fibers to theValueé & The pulse width of the excitable pulse begins to
ventricular cells. In the ventricular fibrillation, excitation ©Scillate below the critical value. This is the breathing insta-

waves are generated from regions other than the sinoatriQi”ty of the pulse trains, and it is also called the alternans

node and propagate irregularly. The detailed mechanism dpSt@bility [9]. When the breathing instability is sufficiently
the ventricular fibrillation is not known well, but the irregu- strong, the pulse train collapses. If this type of collapse of

: . - : . pulse trains occurs in a spiral pattern, the spiral collapses and

:ﬁrt::?eef;g%tlgg O;Zﬁ?v'ty might be due to the spiral Chaosanother spiral is spontaneously created, and it leads to a spi-
There are sor¥1e mc.)del equations for the cardiac cell%al chaos[10]. The spiral chaos appears far0.115. We

based on the dynamics of ion channlss]. Some methods ave proposed a method of elimination of the spiral chaos by

to control the spiral chaos were proposed, using the mod eriodic forcing[11]. (Alonsoet al. studied the supression of

equations[6,7]. Those model equations are rather compli-muL%Lgle[qz]e)Of scroll waves by periodic forcing in the Barkley

cated. We use the Aliev-Panfilov mod8] to study the spiral
chaos and its control. This model is a phenomenologicaJB\Ii
model with two variables like the FitzHugh-Nagumo model
for a neuron. The model equation is expressed as

The real heart is not a homogeneous system such as the
ev-Panfilov equation. There are various structures and in-
homogeneities. We consider mainly the effect of the Purkinje
fibers in this paper. The Purkinje fibers make a network
% =-Ke(e—-a)(e-1)—er+DVZ, structure. The excitation pulse propagates several times
faster in the Purkinje fibers than in the normal ventricular
or tissue. For simplicity, we assume that the dynamics of the
e [e+par/(pa+ )]~ 1 —kele-=b-1)], (1) Purkinje fibers is represented by the same model equétjon
with largerD (D is assumed to be 1 in the ventricular tisgue
wheree denotes a variable representing the membrane pasince the pulse velocity is proportional #®. We consider a
tential, andr is a variable related to ion channels. The exci-two-layer model of the Aliev-Panfilov equation. The first
tation wave of the ventricular cells has a rather long platealayer represents the ventricular tissue and the second layer
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FIG. 1. (a) Entrainment of two pulses @=0.03. The solid lines deno®(x,t) and the dashed lines denaigx,t). (b) Desynchroni-
zation of two pulses a=0.02 in the coupled one-dimensional Aliev-Panfilov model.Pulse velocities in the first fibérhombi) and in
the second fibefcrossesas a function ofd.
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the Purkinje fibers, assuming that the Purkinje fiber network ™ s o A
covers on the ventricular tissue. First, we study the pulse g N - [ﬁT L —
entrainment between the two fibers with a one-dimensional n gé‘"\ il
model. The model equation is written as > =% Vi —
Je, e, 4 70 RS-
—=-Key(e - —l)—er +t——m - A1
p eep—a)(e - 1) —ery e dix(e; - ep), 2 50 é\,—:——-\ :
ary Y ) C ] 4 e r.;é.(;"\ 500 750 1000
“r=ler prl(po + e)]l- 11~ keyer ~b- 1), (@) 0018 0019 oz oot 0cz2 §
9., e, FIG. 2. (a) Pulse velocities in the first fiber as a functiondab
— =—-Key)e,—a)(e,— 1) —e)x,+D— +dy(e;—€y), for d,;=0 (rhomb) and 0.1(crosses (b) Time evolutions ofe;
ot ax2

(solid line) ande, (dashed lingfor d,;=0.1 andd;,=0.018.

I _ + + —_ = —b- same value in the first and second fibers, which is almost the
at Lt mrd(uz + &) -r2—kee, ~b =D, (2) same as the pulse velocity in the secdfabkte) fiber. (In
. contrast, Monineet al. found that a slower front dominates
wheree; ande, represent, respectively, the membrane potensa front propagation in a problem of coupled layers in sur-
tials in the first and second fibers, ang, is a coupling  f5ce catalysi§13].)
constant from the second fiber to the first fiber, adis a Similar behaviors are obtained for more general cases of
coupling constant from the first fiber to the seconc_i flbgr. Weasymmetric coupling. Figure(8® displays the velocities of
do not always assume the symmetty,=d,;, considering he pulse in the first as a function df, for dy;=0 (rhombi
situations such that the membrane potentials change diﬁeﬁnddﬂzo.l(crosse}s The case ofl,,=0 represents the one-
ently in the two fibers owing to theﬂif_ference of the _thick- way coupling, since the second fiber is not affected by the
ness. The pulse propagates fasternbyin the second fiber first fiper. The pulse velocity in the first fiber jumps at
than in the first f|ber, |ﬁ12:d21:0. The interaction between a critical Va|uedlzc, and the pu|se entrainment occurs for
the two fibers induces the entrainment of pulse propagatiorulzz d;,.. The critical valued,,, is nearly 0.020 ford,;=0
Figure Xa) displays the time evolutions @(x,t) [solid  and d,,.~0.0205 for d,=0.1. The critical valued,,. is
line] and e(x,t) [dashed ling for di,=d»;=d=0.03 and nearly 0.20, and hardly depends dn. The velocity of the
D=25. The system size Is=1000 and the periodic boundary pulse in the first fiber jumps down discontinuously below the
conditions are assumed. We have used the finite differencgritical coupling. Ford,;=0.1, the interaction from the first
method withAt=0.0005 and\x=0.5. The two pulses propa- fiber to the second fiber is stronger, then, the delayed pulse in
gate with the same velocity, therefore, we can say that théhe first fiber excites another pulse in the second fiber. As a
two pulses are mutually entrained. Figureo)ldisplays the result, the slower pulse in the first fiber becomes a generator
time evolutions ofey(x,t) (solid line) and e;(x,t) (dashed  of pulses in the second fiber. Figuréb2displays such a time
line) for d;,=d,;=d=0.02 andD=25. The mutual coupling evolution of the pulse generation @;=0.1 andd,;,=0.018.
is weak and the slower pulse described dgyx,t) cannot  Pulses are generated periodically in the second fiber, and the
follow the second pulse. Indeed, the velocity of the firstperiod is 41.4 ford,;=0.1 andd,;,=0.018.
pulse becomes nearly one-fifth of that of the second pulse. Next, we study two-dimensional systems. The Purkinje
Figure Xc) displays the pulse velocities of the two pulses.fibers make a complicated network structure, but here we
The pulse entrainment breaks down below0.02 if the have assumed a grid structure of mesh-size 20 for the net-
coupling constantd,;, andd,, take the same valug Below  work in the second layer for the sake of simplicity. We con-
d=0.02, the pulse velocities take two different values in thesider a coupled system in which the grid network is sur-
first and second fibers, which are almost the same as twmounted on a normal plane. Our model equation is almost
pulse velocities in the case of no coupling. Abade0.02, the same as Ed2), but #°/dx? is replaced by the Laplacian
the pulse entrainment occurs, the pulse velocities take th€2. The variablese; andr, in the first layer are defined
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FIG. 3. (&), (b) Initial patterns ofe; (a) and e, (b) for the numerical simulation(c), (d) Snapshot patterns @& (c) and e, (d) for
a=0.1,D=4, d,=0, andd,;=0. In the marked regiore; (e,) satisfiese;>0.4 (e,>0.4). A spiral chaos apppears in the first layer, but a
spiral pattern is stable in the second layer.
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FIG. 4. (a), (b) Snapshot patterns @&, (a) ande; (b) for a=0.1, D=4, d;,=1, andd,;=0.1. In the marked regiore, (e;) satisfies
e,>0.4 (e;>0.4). A stable spiral appears in the second layer, and a regular spiral appears also in the first layer as a result of the mutual
synchronization(c) Snapshot pattern af; for a=0.1,D=4, d;,=1, andd,;=0.3. A spiral is unstable and many spirals are created.

on a normal two-dimensional plane, aeg andr, in the the parameter, spirals are created also in the second layer, but
second layer are defined only on the grid lines satisfyinghe motion is almost synchronized between the two layers.
x=201+10 or y=20j+10 wherei and j are integers. The That s, the spiral chaos in the first layer dominates the whole
LaplacianV?e, is calculated in the second layer &®,/dx>  system for relatively larged,,.
or e,/ dy* on the grid lines other than the intersections Even if the initial condition is a spiral chaos in the first
(20i+10,20+10) and it is calculated ag’e,/ 9x*>+d°e,/dy>  layer and a regular spiral in the second layer, the regular
at the intersections. We have used the finite differencepiral in the second layer can entrain the whole system for
method with A=0.0005 andAx=0.5 also in the two- sufficiently smalld,,. For this type of simulation, we have
dimensional simulations. assumed that the initial condition f@& is a regular spiral

We consider the cases of relatively stronger interactionshown in Fig. 8d) and the initial condition foe, is a spiral
where the excitation waves tend to be synchronized betweethaos shown in Fig. (8). Figure %a) displays a snapshot
the two layers. However, several types of excitation wavespattern ofe; for a=0.1, D=4, d;,=1, andd,;=0.06. The
such as regular one-dimension pulses, spiral waves, and spittial spiral chaos is eliminated and a regular spiral appears
ral chaos, propagate in two dimensions. We investigatén the first layer. Figure ®) displays a snapshot patternef
which types of excitation waves appear in the coupled sysfor a=0.1,D=4,d,,=1, andd,;=0.08. The spiral chaos can-
tems. A spiral pattern is unstable far<0.115 in the first not be eliminated, and the spiral chaos in the first layer domi-
layer, if there is no interaction, i.ed;,=0 andd,;=0. How-  nates the whole system. The transition for the elimination of
ever, a stable spiral appears on a grid structure in the secoride spiral chaos occurs ab,~0.07 fora=0.1, D=4, and
layer. We first show a numerical simulation far0.1 and d;,=1. This critical value ofd,, is different from the critical
D=4 in the case of no coupling. Figure&@Band 3b) show value of the instability of a regular spiral as shown in Fig. 4.
initial patterns fore, ande,. The initial values are the same Even a smaller value al,; is necessary for the elimination
on the grid lines, i.eg;(x,y)=e,(x,y). Figure 3c) displays a  of the initial spiral chaos. Thus we have shown that the spiral
spiral chaos in the first layer. The initial regular spiral breakschaos is eliminated in the first layg¢corresponding to the
up and many small spirals are created. Figud 8isplays a  ventricular cellg by the regular spiral in the second layer
stable spiral in the second layer. The spiral is rather anguldicorresponding to the Purkinje fibgr#f the coupling is suf-
because it appears on the grid structure. It is not a numericdiciently asymmetric. We have shown the results only for
artifact. We have got the same angular spiral even in a simd?=4 anda=0.1, but similar results are observed for other
lation with higher resolution with smaller space stiep We  parameters.
have checked that this type of spiral is stable even for The elimination of the spiral chaos in the first layer can be
a=0.06 in the grid network. The average period of temporal
oscillation is 29.4 in the first layer, and the period of oscil-
lation is 34.5 in the second layer. The spiral in Figd)3
rotates slower than the spiral chaos in Fig)3If the mutual
interaction is not zero, mutually synchronized spiral waves
can appear. FigureS@ and 4b) display snapshot patterns
of (@ e, and (b) e, at the same time fom=0.1, D=4,
d,,=0.1, andd;,=1. A spiral rotates stably in the first layer, 07
which is entrained to the spiral in the second layer. The ini-
tial condition is a regular spiral shown in FiggaBand 3b). 0

a
The stable spiral in the second layer overcomes the spira(l )o %0

chaos in the first layer owing to the asymmetric coupling FiG. 5. (a) Snapshot pattern & for a=0.1,D=4, d;»=1, and
dy;<dy. If dy; is step by step increased at a fixed value ofd,,;=0.06. As an initial condition, a regular spiral is set in the sec-
di,=1, the spiral becomes unstabled3t~0.27 and many ond layer and a spiral chaos is set in the first layer. The spiral chaos
spirals are created. Figuréch displays a snapshot pattern of is eliminated.(b) Snapshot pattern o, for a=0.1, D=4, d,=1,

e, in the first layer fora=0.1,D=4, d,;=0.3, andd;,=1. At  andd,;=0.08. A spiral chaos dominates the whole system.
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FIG. 6. (a), (b) Snapshot patterns & (a) ande; (b) for a=0.1,D=4, d,,=0.15, andd;,=4 with a pacemaker region in the left side of
the second layer. The spiral chaos is eliminated and a regular pulse is propagatingxmliteztion in both layers(c), (d) Snapshot patterns
of & (c) ande; (d) for a=0.1,D=4, d,;=0.19, andd;,=4. Spiral chaos dominates in both layers.

performed even by regular pulses in the second layer. Ithe Purkinje fibers starting from the pacemaker region in the
normal states of heart beating, regular pulses are emittesinoatrial node. Figures(6) and @d) display snapshot pat-
from a pacemaker region and propagate through the Purkinj@rns ofe, ande, for a=0.1,D=4, d,;=0.19, andd;,=4. The
fibers. The regular pulses are transmitted to the ventriculagpiral chaos cannot be eliminated at the parameter and al-
cells. To simulate a similar situation, we have performed anost synchronized spiral chaos appears in both layers. The
numerical simulation. To generate regular pulses in the segransition for the elimination of the spiral chaos occurs at
ond layer, a periodic force of the fori=0.2 sin(27t/60) is dp;~0.17 fora=0.1,D=4, andd;,=4. The critical value of
applied in the regiox <10, ande,(x,y)=0 is assumed ini- d21|ncreases withD for a=0.1 andd;,=4. For example, the

X210 the second layer works a5 a pacomaker region, Trg 102 Yalues ofdz are evaluated adzy =009 for D=1,
period 60 is rather smaller than the period of spiral waves. If 2 170,17 for D=2, Ua1c=0.34 for VD=4, dy,=0.46 for
the initial condition ofe; is 0 in the first layer, regular pulses VD=6, andd,,;=0.6 for \D=8. That is to say, the elimina-
propagate naturally both in the first and second layers. To te$ton of spiral chaos occurs more easily 6@ is increased.

a possibility of the elimination of the spiral chaos in the first The pulse velocity increases in proportiomid if the inter-
layer by the regular pulses in the second layer, the initiapction between the two layers is absent. If the sinusoidal
condition ofe, is set to be a spiral chaos shown in Figc)3  force f=0.2 sin2t/60) is uniformly given to the grid net-
and the initial condition o0&, is set to be a regular pulse state work in the second layer, the elimination of the spiral chaos
constructed by a simulation without the mutual coupling.occurs belowd,;=2.0, whend,, is fixed to be 4. This simu-
Figures 6a) and Gb) display snapshot patterns @) e, and  lation corresponds to the case®# «. Thus we have found
(b) e, fora=0.1,D=4,d,,=0.15, andd;,=4. Aregular pulse that the regular pulses in the second lagearresponding to
propagates in the x-direction in both layers. The spiral the Purkinje fiberscause the pulse entrainment between the
chaos in the first layer is eliminated and the periodic forcingtwo layers, and the spiral chaos can be eliminated, if the
in the pacemaker region dominates the whole system. If thisoupling is sufficiently asymmetric. The strong effect of the
type of phenomenon occurs in real hearts, the ventriculaPurkinje fibers on the ventricular cells may be related to the
fibrillation can be eliminated by the regular pulses throughsuppression of the ventricular fibrillation.
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